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The methods of system identification and spectral analysis are well
documented in the literature. In this paper, we attempt to merge the
methods of least-square system identification and short-time Fourier
transform spectral estimation. Starting from the least-squares normal
equations for a linear system identification problem and expanding
the signals in short-time Fourier transforms, we derive a Toeplitz
system of equations, the solution of which approximates the original
least-squares equation solution. We then bound the error norm be-
tween the two solution methods and show the properties of the error
by numerical methods. The resulting “spectral” estimation method is
shown to completely remove the bias normally associated with pre-
viously proposed spectral estimation procedures. The method appears
to be particularly useful when one is interested in linear system
identification of very large systems (long impulses response) or for
system identification in the presence of nonstationary (e.g., burst)
notse. Extensive numerical results are included.

I. INTRODUCTION

Although time-domain methods have been in use for system iden-
tification and modeling for at least 35 years, no simple, robust proce-
dure has been proposed which uses short-time Fourier transform
methods. Classical spectral analysis methods are generally inadequate
for all but the simplest cases because of their unsatisfactory properties.
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Fig. 1—Block diagram of the system identification model.

Recent results in the theory of short-time spectral analysis have
suggested a framework for a new method of spectral estimation and
system identification.'”® It is the purpose of this paper to describe the
theory of this new algorithm and to compare and contrast it to three
alternative procedures of system identification. In this paper we at-
tempt to clear up many questions raised by an earlier related paper.!

Figure 1 is a block diagram of the general system identification
model. The input signal x(n) is assumed to be zero mean white noise
having variance o2. The linear system h(n) is assumed to be a finite
impulse response (FIR) system of duration M samples,

hin)=0, n<0,n>M-1. (1)

At the output of the linear system, an independent white noise g(n)
(having zero mean and variance o2) is added to v(n) to give the output
signal y (n). Thus

y(n) = x(n)*h(n) + q(n) (2a)
M-1
= ED h(m)x(n — m) + g(n). (2b)

The signal-to-noise ratio (s/n) at the output of the system is defined

as
/n=101o E@ ) _ 10 10g.0 2 3)
s/n= g10 m B10 of. ’
where E is the expectation operation.
The system identification problem is one of finding an estimate h(n)
of h(n), given only N samples of the input x(n) and the output y(n). It
is assumed that the duration of A(n) (call this M) satisfies the relation

M=M, 4)

i.e., that we have knowledge of, or can accurately bound, the duration
of the system impulse response. In general, we assume that N > M.
Assuming the constraint of eq. (4) is obeyed, one reasonable measure
of system performance is the quantity
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E_o [h(m) — A(m)T?

Q = 10 logi | } (5)
¥ h*(m)

m=0

The quantity € is called the “misadjustment” or “misalignment”
between A(n) and A(n).

Several classes of techniques are known in the time domain for
solving the system identification problem, the most important of which
is the classical least-squares analysis (LsA) method. In the frequency
domain, however, only very simple, suboptimal techniques have been
proposed for solving the system identification problem, and these
techniques have not proven to be entirely adequate for any reasonable
class of problems.>’ In this paper, we derive a new short-time Fourier
transform domain approach to the system identification problem
which alleviates many of the problems encountered using previously
proposed frequency domain methods. High-quality frequency domain
techniques are interesting for many reasons, but several notable ones
are that (i) very large systems may be estimated (M = 10° points), (ii)
FFT methods are numerically very efficient, (iit) ill-conditioned prob-
lems are naturally identified, and (iv) the coherence function may be
computed and used adaptively to dynamically modify the analysis
procedures in a data-dependent way (a form of nonlinear analysis)."
Furthermore, with the advent of high-speed array processors, algo-
rithmic procedures which use FFTs are frequently easily implemented.

Il. LEAST-SQUARES SOLUTION

Several basic results are necessary before we describe our frequency
domain method. Since our approach is based on the method of least-
squares analysis (LsA), we define that procedure first.

In the Lsa method, one minimizes the quantity

N—1
I= 3% (yn)—3m), (6)
n=M-1
where
M-1
y(n) = ZO h(m)x(n — m) + g(n)
= h*x + q(n) (7
and
M-1
y(n) = ¥ A(m)x(n — m) = h«x. (8)

m=0
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Taking partials of I with respect to h(l), the unknowns, for 0 < [
< M — 1 results in the set of equations

N-1
Y (ym) —ym)x(n—0=0, O0<I<M-1, 9)

n=M-1

or in terms of x and y

M-1
Y h(m) ¥ x(n — Dx(n —m) = Yym)x(n=1),0=sl=< M -1, (10)
m=0 n n

where in all cases Y. implies a sum from M —1to N— 1, where N is
the total number of data points required by the analysis. Our limits on
n have been chosen so that the first and last required points of data
are x(0) and x(N — 1).

We now define

o(l,m) =Y x(n — N)x(n — m) (11)
r(l) = ¥ y(n)x(n — 1) (12)
¢ = [, m)] (13)
r=[r()] (14)
h = [A()]. (15)

Using this notation, eq. (10) becomes the matrix equation
oh=r. (16)

Our approach will be to approximate eq. (16) by a Toeplitz matrix
equation which may be solved by one of the Toeplitz inversion meth-
0ds®® or approximately by DFT methods. In general, the solution of eq.
(11) would be the optimal approach; however, when h is very large
(i.e., M = 10%), the computation, storage, and solution of eq. (11) is
totally impractical. Under these conditions, the methods of this paper
might be useful.

Il. OVERLAP-ADD EXPANSIONS

The key to our method is the overlap-add expansion of a signal
based on the following identity:

bl R-1
Y w(mR-n)=(1/R) ¥ W(e/ /Py g1 t2n/Rinp, (17)
m=—o p=0

where W(z) is the z transform of w(n) and m, R, n, p are integers.
Equation (17) is the discrete version of the Poisson sum formula.? If
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we now assume that w(n) is a time-limited lowpass function, such as
a Hamming or Kaiser window, and R is chosen such that e/>"/% is
greater than the cutoff frequency of W(z), then the following approx-
imate relation holds:

(R/W(e”) ¥ w(mR-n)=1, (18)

m=—mx

with an error determined by the out-of-band energy in the window
w(n). For any reasonable window, the error is negligible.” If we define
D = W(e’°)/R and multiply eq. (18) by any signal x(n), we obtain the
overlap-add expansion of x(n):

x(n) = Y xm(n), (19)

m=—wx

where
Xm(n) = % w(mR — n)x(n). (20)

The Fourier transform of x,.(n) is called the “short-time” Fourier
transform.”* Expansions of ¢ and r by use of overlap-add expansions
of x(n) and y(n) are possible through straightforward application of
egs. (19) and (11) and (12):

om) =% ¥ xn—10 ¥ xp(n—m)

n k=—mx p=—m

=Y X ¢mll,m), (21)

where we have defined
dpu(l, m) =¥ xp(n — Dap(n — m)
1
=F2x(n— DwkR + 1 — n)
-x(n — m)w(pR + m — n) (22)

and

r(l) = ¥ y(n)x(n — 1)

=¥ E k=); Yo(n)xp(n — 1)

P
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= 2 X rmlD, (23)

p=—o k=—w
where

rox(l) = ¥ yp(n)xa(n — 1)

1
=1 Y y(m)w(pR — n)x(n — Dw(kR + L — n). (24)

In Fig. 2 we show the relative window displacements for the term
&pr(l, m) of eq. (22) assuming a window L points long. Due to the time
truncation of the windows, the sum on n does not extend beyond the
interval Ns < n < Np, where

Ni=max(kR+ L, pR+m)+1-L
Ng = min(kR + [, pR + m). (25)

The situation is identical for the case of ryx(l) if m is set to zero in eq.
(25).

When implementing the sums on p and £, it is frequently convenient
to make a linear transformation of variables from & to ¢ of the form
k = p + q. In these variables, N4 and Np may be written as

Na(p, q) =pR — L + 1 + max(m, gR + 1) (26)
Ns(p, q) = pR + min(m, gR + ). (27)

IV. SHORT-TIME SPECTRAL APPROACH TO SYSTEM IDENTIFICATION

In this section, we show how to split the LsA matrix equation ¢oh =
r into the sum of a Toeplitz matrix and an error matrix. The Toeplitz
matrix may be evaluated in the frequency domain and inverted by
Toeplitz matrix inversion methods (or approximately by DFT methods).
The error matrix will be shown to decrease (relative to the Toeplitz
part) as 1/N, where N is the number of data points. Thus as N
increases, the error in the solution (relative to the LsA solution) will
decrease at the rate of 6 dB per octave as the number of data points

Ng Ng
: I kR+2>pR+m
1 |
[]
— <G S~

pR+m—L+1 pR+m kR +¢

kR+2—-L+1

Fig. 2—Relative position of the windows for the matrix element gps.
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increases. Significant errors in h due to the additive noise g(n) are also

present when the s/n is small, and these errors decrease at the rate of

3 dB per octave as N increases.® Thus, for large enough N, the

truncation errors due to our approximation of the LsA matrix equation

will be less than those due to the additive noise g(n). Under these

conditions, the Toeplitz estimate will be as accurate as the LsA result.
We split eq. (11) as follows

d=¢+e
r=%r+32§
h=h+A, (28)

where € is the non-Toeplitz part of ¢, ¢ is Toeplitz and symmetric (i.e.,
¢ = [$(I — m)] = [¢(m — 1)]), and h satisfies the equation

¢h =1 (29)
A is the error between the LsA solution and the Toeplitz solution eq.
(29). By bounding the norm of A, ||A || = || h — h||, we can evaluate the
error introduced by our procedure.

To obtain an expression for ¢, we observe the following: When Na
and N are inside the range of the sum on n, namely, M —1<n<N
— 1, the sum on n is limited by the windows rather than by the data.
We define ¢ to be composed of all terms of ¢,x(l, m) of eq. (21) such
that N, and Np lie inside the natural interval of the data independent
of [ — m and € to include all the remaining terms of ¢.(Z, m). Thus

$l-m)=73 T oull, m) (30)
pES kES
Fly=% Y ral) (31)
pES kES
el,m)=73 Y ¢pll, m) (32)
PES RES
) =% ¥ r(l) (33)
PES kES

define the matrix elements of ¢, ¥, €, and 8, respectively. For ¢ and t,
the sums on p and k are over the set S(p, k), while € and § are summed
over all k and p outside S. The set S is defined by all integers p, k, as
shown by the dots in Fig. 3, such that

NA?M—I
Ng=sN-1
Nas < Np. (34)

Equation (34) is to be satisfied for all m and [ in the range [0, M — 1].
In the appendix we give an explicit formula for ¢( — m). From Fig. 3
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_ Fig. 3—Points comprising the set S in the (p, k) plane which are used in computing
¢ and F. Also shown are the regions which define ¢ (see the appendix).

we see that, in general, the set forms a strip which is missing small
pieces at its ends. These small pieces are the set of p, £ € S which may
be used to compute € and § (see appendix).

Because of the definition of the set S, the sum on n in egs. (22) and
(24) may be extended to +o since the windows naturally truncate the
data to N4 < n < Nz. As a result of this definition, ¢ is only a function
of I — m and is therefore Toeplitz. Such is not the case for e(l, m),
however, since most terms in this sum are truncated at either n =
M — 1 or n = N — 1. Finally, note that the expected value of elements
of ¢ or I increases linearly in N (i.e., is of order N),

E(¢) = O(N)

E(F) = O(N),
while the expected value of elements of € and 8 is of order 1 (ie,
independent of N)
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E(8) = 0(1)

E(e) = O(1).
Thus, as N approaches o, the solution of eq. (29) approaches that of
eq. (16) at a rate of 6 dB per octave in N.

V. TRUNCATION ERROR ANALYSIS

A bound on the truncation errors may be obtained from egs. (16),
(28), and (29) in the following way. From eqs. (16) and (28),

p+e)h+A)=F+8 (35)
or
¢h+¢A+eh+eA=++38. (36)
As a result of eq. (29),
¢A + eh + €A = 8. (37
Next we multiply by ¢ ' and solve for A as
A=¢"'(8-¢h) —¢7"eA. (38)

Forming the norm of each side of eq. (38), we define a measure of error
Qa [eq. (5)] which, after some algebra, may be shown to be bounded
by (|| - | as defined here is the Euclidean norm of a vector)

1A] 167118 - Al
Qs = 20 log: [ ] logm[ e ]
ST 1= 167 lel

If we let A:(A) denote the ith eigenvalue of the matrix A, then it can
be shown that

(39)

16711 = (min M(G'6)) 7
lell = (max Ae'e)}

where, by definition,

1/2
|ﬁ||—(>: h*(n)

M-1 1/2
lal= ( Y A”(t)) : (40)
Useful bounds on these norms are easily obtained for € and ¢ . For
the latter, if ®(ws) is the 2M — 1 point DFT of [¢o, ¢, -+ -, Paz—1, P1-s1,
., ¢-1], then
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|6~ || < min | D(awe)| " (41)

In practice, ®(w:) and the DFT of 7, R(ws) are directly computed from
the data x(n) and y(n). @, is only of theoretical interest and would
generally not be computed in a real problem.

V1. IMPLEMENTATION OF THE SHORT-TIME SPECTRAL APPROACH TO
SYSTEM IDENTIFICATION

As a result of the previous discussion, our method is implemented as
follows:

(i) Form windowed data segments y,(n) and x(n) for each p and %
in S.

(if) Compute the correlations ¢,.(! — m) and #.(I) which may be
done as follows (using fast correlation techniques):

Xi(w) = F{xx(n)}

Yo(w) = F{y,(n)}

Bk(w) = X (w)Xp(w)
Ror(w) = X2(w) Yy(w)

dpr(n) = F'[@pe(w)]

For(n) = F'[Rpe(w)]. (42)

F[-] and F~'[.] are the Fourier transform operations and ()* defines
conjugation.

(iii) Form ¢() and #({) by summing over all p, & € S as discussed in
the appendix. (In practice, this computation is done recursively. Fur-
thermore, the sum is best done in the frequency domain.)

(iv) (Solution Method 1) Finally, solve the matrix equation

¢h = f.
This equation may be solved by Toeplitz matrix inversion methods
which require only M? operations and 2M storage locations.

(iv") (Solution Method 2) Alternatively, under some conditions we
may approximately find H(w) by Fourier transforms from

ciuw)=F[z 5 épk(n]

pES RES

R(w) = F[ ¥y ¥ fpk(l)]

PES keS

R(w)

ﬁ(u) =m'-)'.
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®(w) is the autospectral estimate and R(w) is the cross-spectral esti-
mate. They sharply differ from the classical definitions of these quan-
tities because the cross terms p # k have been included. The inclusion
of these cross terms is responsible for the removal of the bias in these
estimates (see the next section). The DFT version of the above differs
slightly in some of its details.

Vil. BIAS AND THE CLASSICAL CASE OF SPECTRAL ESTIMATION

The most common method of spectral estimation is equivalent to
forming the estimate

Siy(w) = %: Yi(w) X2 (w), (43)

where the sum on £ is taken on nonoverlapping or slightly overlapping
intervals (i.e., R = L or R = L/2). There appear to be several flaws in
this method. First, R should be less than L/Q where £ is the time-
bandwidth product of the window, as is required by the Nyquist
theorem.>* For a Hamming window,  is 4. Second, because of the
absence of cross terms, bias is present in the estimate as may be seen
by inverse Fourier transforming S;,(w). For example, if in eqgs. (29) to
(31) we modify the sum on % to be £ = p + g with g a fixed integer,
then eq. (29) becomes
M-1

E—O h-'(m) 2 ¢-p.p+q(£ - m) = Z Fp.p+q(l)- (44)

If we define the (decimated) autocorrelation of the window by

Yu(l) = ¥ w(pR)w(pR + 1), (45)

p

then, for a white noise input (with variance ¢%) and for no additive
noise (o2 = 0), if we assume ergodicity, i.e.,

N-1
lim [l Y x(n)x(n + m>] = 0%8(m) = E[x(n)x(n + m)], (46)

N—wx N n=0

where 8(m) is one when m = 0 and zero otherwise, the term in the left-
hand side of eq. (44) reduces to (as N — )

1 ~ 1 N-1
lim [R’Z Op.prgll — m)} = lim[— Y x(n—m)x(n—1)

N—owx —o0 N n=0
Yw(pR+m—n)
P
cwi(p+q)R+1- n)] 47
=028(m — (@R + [ — m) (48)
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and the right-hand side of eq. (44) similarly reduces to
1 N-1
- { Y7 p+q(l)] l: Zo y(n)x(n = 1)

E w(pR — n)w((p+q)R + 1 — n)] (49)

= o2h(Iu(gR + I). (50)
From eqs. (44), (48), and (50), we get
o2h(DYu(gR) = o2h(l)Yu(gR + 1) (61)
or
. YulgR + 1)
Al = h(l) —/—————.
() (1) VulaR) (52)

Equation (52) shows that the effect of the window is to modify the
estimate of i by the quantity y.(gR + I)/J.(gR). When g = 0 [the
classical case, eq. (43)], we have the result

Vull) |
¥ul(0)’

thus, A(l) is a biased version of k(!). By summing over q [i.e., sum eq.
(44) over gq], the bias is removed since y, is a lowpass function,
satisfying the relation [see eq. (18)]

Y YuwlgR + I) = ¥, Yu(qR) = constant (54)
q q

h(l) = h(l) —— (53)

and eq. (52) gives the desired result
h(l) = h(D), (55)

independent of the window.

Vill. EXPERIMENTAL RESULTS

In this section, we give some numerical results for a simulated
system identification problem. Using the system of Fig. 1 as the model,
a specific FIR system was chosen for h(n) with impulse response
duration M = 7 samples. This is the simple system used in Refs. 1 and
6, and its impulse response is given by

n (0 1 2 3 4 5 6
h{n)| 0.1 | 05| 1.0| 05 |—0.5 |—-1.0| 0.5

The input to the system x(n) was a Gaussian noise with zero mean
and variance o%. The additive noise g(n) was an independent Gaussian
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noise with zero mean and variance ¢2. In each of these examples, a
Hamming window was used.

Figure 4 shows a plot of @ [eq. (5)] as a function of N fora} =0 (i.e.,
no additive noise) and for values of the parameter go, where g, is the
number of off-diagonal cross terms used in estimating ¢ and ¥, as
expressed in the form

N o0 P2

)= Y T dpp+all) (56)
q=—qp P=P,
qo P2

)= Y T Fopsgld). (57)
g=—qgp P=P,

For this example, solution method 1 [Section VI, step (iv)] was used to
solve the matrix equation. As go gets larger (i.e., as more cross terms
are included), the bias is removed as seen in Fig. 4. If go = gmax, where
[see eq. (70) in the appendix]

M+L-2
gmax = l—R—'J, (58)

then no further changes occur in ¢(1), 7() (or ). In this example, Gmax
= 5. The effects of the bias for go = 0, 1, 2, and 3 are such that, for
large values of N, @ is from 15 to 45 dB worse than for the unbiased
estimates. For values of g greater than 3, only small changes occur in
Q. Thus there is a computational tradeoff—especially in cases where
gmax is calculated using M and M is greater than M. When M = M and

—40 -
A
M= 16 =4
S0 =16
R=4
MATRIX SOLUTION 1 q. =7
_go b1 L L N BT 1 1
50 100 500 1000 5000

N’

Fig. 4—Plots of @ versus N for M = 16, L = 16, R = 4, s/n = », and several values of
qo, using matrix solution method 1 [Section VI, step (iv)].
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the impulse response of the system has large values near n = M, then
values of up t0 gmax are required for the best solutions.

Figure 5 shows plots of @ versus N for different Hamming window
lengths L for the matrix solution method 1 (Fig. 5a) and for the FFT
solution method 2 (Fig. 5b), for a fixed value of M = 8 and for o2 =0.
(Comparable results were obtained for larger values of M up to M =
64.) It can be seen by comparing the curves of Figs. 5a and 5b that the
@ values obtained from the matrix solutions were from 10 to 20 dB
better than those obtained from the FFT solution [Section VI, step
(iv)] for small N (such that @ from the matrix solution was —30 dB or
larger). For large N, the two methods of solution yielded essentially
identical results.

8
L/4
ATRIX SOLUTION 1

A

M=
-10 |- R=

M

A
M= 8
R=L/4

FFT SOLUTION 2

—201— .‘/
L=32
=30 +
Q -40
L~L=16
—50 |
—60
S
-70
L=64~
(b)
—80 Lol 1 L1 1yl L 11
50 100 500 1000 5000

N

Fig. 5—Plots of @ versus N for M = 8, R = L/4, s/n = =, and for several values of L
for: (a) matrix method 1 and (b) FFT method 2 [Section VI, step (iv')].
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From Figure 5a, two additional points are noted. First, we see that
the asymptotic behavior of the curves of @ versus N is a 6-dB-per-
octave slope as shown by the dotted line in this figure. For small N,
the curves deviate from this slope. Second, we see small but consistent
differences in the curve of @ versus N for different values of L. An
exact explanation of this result is beyond the slope of this paper;
however, eq. (39) shows that @, is directly proportional to the norm of
8 — €h. It can be shown that |8 — €h| gets smaller as L increases
(since the error terms become more highly correlated), thus @, depends
on L in a very complicated manner as illustrated in Fig. 5. A simple
analysis of the effects of |6 — €h | on @ is as follows. If § and €h are
not correlated, then

18— eh| =| 8| +[ehn]. (59)
When the two terms are correlated,
6 —eh|| <[ 8] + | €h]. (60)

Equation (59) implies that, if || §|| is made zero, |8 — €h| decreases
since one of two terms has been removed. Equation (60) implies that
the error must greatly increase when || 8 || = 0. Experimentally, § was
set to 0 in our numerical simulations (by computing r exactly), and it
was observed that the error @ increased by more than 20 dB. This
showed that eq. (59) was a bad approximation because 8 and €h were
highly correlated.

Figure 6 shows a direct comparison between the @ values obtained
from the matrix solution method 1 (Section VI), the FFT solution
method 2 (Section VI), and a third method which we call the classical
Toeplitz case (solution method 3), for M = 8 (Fig. 6a) and M = 64 (Fig.
6b) and for o2 = 0. For the first two solution methods, a value of L =
64 was used for the window. Method 3, the classical Toeplitz case,’
computes matrix elements ¢r(I) and #r(J) directly from the data as

) N—1—-|1|

or(l) = E x(n)x(n + 1)
n=M-1
N-1-|1|

Fr(l) = Z x(n)y(n + 1) (61)
n=M-1

and determines Ar(n) as the solution of the matrix equation
orhr = #1. (62)

By comparing the three solution methods, it is seen that the matrix
solution method 1 gives the smallest @ values for almost the entire
range of N, whereas the FFT method 2 gives smaller @ values than the
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Fig. 6—Comparisons of the curves of @ versus N for L = 64, R = 16, 5/n = o, for
solutior(l n;ethods 1 to 3 for (a) M = 8, and (b) M = 64. Method 3 is defined in the text
by eq. (62).

Toeplitz method 3 for large values of N, and larger @ values for small
N. Analysis of the classical Toeplitz case shows that this method is
identical to the matrix solution method 1 using a rectangular window
with a shift of R = L (i.e., an entire window shift). Figure 6 thus
directly demonstrates that Hamming window results are better than
rectangular window results.

Figure 7 shows a plot of @ versus M for a fixed value of N = 1024
and for several values of L. It can be seen that the curves of @ versus
M have a slope of about 3 dB per octave in M, as predicted based on
the definition of eq. (5).° However, we also see the interesting effect
that, for certain values of M and for different values of L, the value of
@ makes a discrete jump and then jumps back to its previous level
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(approximately). This effect is due to discrete changes in the limits ¢,
and g; with L (see appendix) which is directly reflected in the curves
of @ versus M. The point of this figure is to show the effect of the
positioning of the windows with respect to the data. Depending on the
exact window placement, 3 dB of difference can be expected in a
typical case.

As a final example, Fig. 8 shows a set of curves of @ vs N for s/n =
8 dB, M = 16, and for several values of L. Also plotted in the figure is
the theoretical curve® (dashed line) for the least-squares analysis Qrsa
= 10 logi[M/N] — s/n. This curve drops at a rate of 3 dB per octave
as N increases. It is seen that the measured @ curves from the matrix
solution method 1 are quite close (within a few decibels) to the
theoretical curve for values of N greater than about 100. In these cases,
as N increases beyond about 100 points, the s/n-induced errors domi-
nate the truncation (€ and 8 induced) errors. Thus (for N > 100) there
is no advantage in solving the LsA equation since the Toeplitz solution
is equally accurate.

IX. DISCUSSION

The purpose of this paper has been to focus on the problems of
system identification and spectral estimation and to investigate tech-

0

N'= 1024
R=L/4
MATRIX METHOD 1

_70 ! | | 1 | L | I [
7 35

Fig. 7—Plots of @ versus M for N = 1024, R = L/4, s/n = =, and several values of L
for matrix method 1. M is on a linear scale for this figure.
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Fig. 8—Plots of @ versus N for M = 16, s/n = 8 dB, and several values of L for matrix
method 1. The dashed line is the theoretical LsA result for @ as derived in Ref. 6 (see
text).

niques based on the short-time spectrum. We have shown that the
problem of system identification can be solved by expanding each term
of the least-squares solution in terms of short-time signals. By carefully
examining and partitioning the terms entering into the computation,
the system identification problem was approximately transformed
from a general positive definite matrix inversion problem (the least-
squares normal equations) to a T'oeplitz matrix inversion problem with
an error which was bounded and of order 1/N. The terms which
entered into the Toeplitz problem were identified as estimates of the
power spectrum of the input and the cross power spectrum of the input
and output. It was shown that the individual spectral estimates were
unbiased—that is, they were independent of the window used to make
the estimates.

Most of this paper has dealt with theoretical and numerical inves-
tigations of the properties of the resulting spectral estimates and their
effect on the system identification solution. We have shown the follow-
ing to be true:

(i) The spectral estimates F(¢(/)) and F(7()) are unbiased.

(if) The quality @ of the system identification estimate improves at
a rate of 6 dB per octave as N increases for sufficiently large N and
small additive noise (data-limited region).

(zii) The quality @ improves at a rate of 3 dB per octave as N
increases for sufficiently large N and large additive noise (noise-limited
region).

(fv) The resulting method approximates the least-squares normal
equation by a Toeplitz equation, which is more accurate than the
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standard Toeplitz approach which uses rectangular windows of dura-
tion equal to the total data length.

(v) The quality @ improves at a rate of 3 dB per octave as M
decreases, if M = M.

The key issue that remains to be discussed is the possible advantages
and disadvantages of the short-time spectral approach [compared to
alternative procedures such as the LsA or LMs (least-mean-squares®
method)]. The main advantages of this method are:

(i) Implementation of the spectral estimates is straightforward and
is readily performed using FFTs.

(i) The resulting matrix equation can be solved directly using a
Levinson® or Trench® inversion, or approximately via FFT methods.

(iii) The resulting solution has good asymptotic properties with
respect to the variables N, M, and s/n.

(iv) The method is easily amenable to adaptive procedures based
on short-time spectral estimates. This property could be useful for
systems where the additive noise is nonstationary—e.g., burst noise or
corrupting speech.

(v) The method might potentially be applied to problems where M
is on the order of 1000.

The disadvantages of the method are:

(i) The quality factor @ for the noiseless case for data lengths
comparable to the impulse response duration (N = M) is significantly
worse than that obtained from the LsA method.

(ii) A Toeplitz matrix equation must still be solved to obtain the
highest accuracy solutions. However, it should be pointed out that the
time required to invert a Toeplitz matrix is usually much less that the
time required to compute it (i.e., when N > M).

The final assessment of the utility of this, or any other spectral
estimation or system identification method, is its applicability to a real
world problem. One natural application for this method is the echo
cancellation problem' where the impulse responses are long and
possibly time-varying and additive nonstationary noise is present. We
anticipate applying our technique to this problem as a more stringent
test of its capabilities.

X. SUMMARY

In this paper, we have discussed a class of system identification and
spectral estimation methods based on the short-time spectral repre-
sentation of signals. We have discussed the properties of these methods
and illustrated them with some simple examples. Qur conclusion is
that, for some applications, this new method provides a practical
alternative to the classical least-squares analysis method. We would
like to thank I. W. Sandberg for discussion on Section V.
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APPENDIX

We derive here an explicit formula for ¢ and €. The constraints on
N4 and N5 are

Ny= M-1 (63)
Np<sN-1 (64)
) Nai= Np. . (65)
The equation for ¢(I — m) is
N g2 P2
¢o(l—m)= E Z Pp.piqll, m), (66)
q9=q, P=P,

where ¢pp1q(l, m) is given by eq. (22) with 2 = p + q. Constraint (63)
gives p., (64) gives ps, and (65) gives g1 and g as follows. From egs.
(63) and (26),

pR=M+ L — 2 — max(m, gR + I).

Since we wish this to hold for all lags (m, {) on [0, M — 1], it must hold
for m = [ = 0, the values which give the greatest p value for which the
inequality holds. Thus

pig) = [M;;”—E] — max(0, g). (67)

The functions [x] and |x ] are called cEILING(x) and FLoOR(x). They
are defined by truncation to the next integer above and below x,
respectively. For example, [7] = 4, | —w] = —4, [0.5] = 1, etc. For any
x, [x] = —|—x), |[x + n) = |x] + n, and [x + n] = [x] + nr, where n is

an integer. i
Constraint (64) gives p, with m = I = M — 1 as the worst case. Using
eq. (27),
N-M .
palq) = I_ . J — min(0, q). (68)
Finally from constraint (65) and egs. (26) and (27),
—-I-L+1
q = lrm_._R_‘l (69)
-I+L-1
g = I_’”TJ (70)

Since p, and p; are functions of g, the p(g) sum must be done first
as shown in (66). Thus (66) to (70) completely specify ¢.

Next we give formulas for €. € has two components, as may be seen
in Fig. 3, which we call €, and e_. Then € = e; + €_, where
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Py ks

€—(£1 m) = Z E ¢Pk(l) m) (71)
p=p; k=k;
with
M—1-m
ps = [—R—] (72)
L+M-2
k= pa = {+—R—-| ~1 (73)
M-1-
ky = I-__ﬁ’_l-‘ (74)
and
pe ke
e(Lm)=Y Y oml(l,m) (75)
P=ps k=k;
N-M
N—-2+L-—-m
Ps = |___R—J (77)
B = N-2+L-1 .
s=|l—Fx% | (78)
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